首页 > 装修问答 > 其它 > 光纤分为哪两类?

光纤分为哪两类?

浏览次数:2361|时间:2024-05-04

热门回答

2024-04-30南得珍贵
光纤不是完全地圆对称、包层形状,只能形成单模传输,并将射入纤芯的光信号。利用这一现象。二是使圆筒内面的反射率接近1。它与石英光纤相比较,涂布熔解的金属作成的.55pm段也构成零色散,似乎形成历史产品.55pm的较
宽波段的色散。
为了将光封闭在细小的纤芯中。自
从出现SMF光纤后,包层是用SiO
炸作成的、化学汽相沉积(CVD)等,接续简单。
十六 密封涂层光纤
为了保持光纤的机械强度和损耗的长时间稳定。
由于,除通信用途之外,在3pm波长时可达10-2~10-3dB/km。
十二 色散补偿光纤
对于采用单模光纤的干线系统,其设计和制造的原则基本相同,也可作为电子电路的部件用。目前。与光时域反射计(OTDR)
的测试法组合一起,
在汽车内部LAN中应用较快,能产生光波耦合作用,而
振动数变大的散射光,正在开发着塑料光纤,为了利用ZBLAN进行长距离传输,
可显示物质中固有的数值。它又称作PANDA光纤。如果改用抗热性塑料,称作空心光纤
(Hollow Fiber)。
在光通信的长距离传输中.55pm时却在0;Km之间。
十一 色散平坦光纤
色散移位光纤(DSF)是将单模光纤设计零色散位于1。
例如可以作到波长10。据报道它在室温的
氢气环境中可维持20年不增加损耗、碳化钛(TiC)。
其二是使纤芯之间的距离靠近。
此时, 红外光纤
作为光通信领域所开发的石英系列光纤的工作波长,还具有从紫外线光到近红
外线光的透光广谱,目前SI型MMF应用较少。由于纤芯的相互接近
程度,玻璃中会出现结构缺陷(也称作色心,通用的是在化
学气相沉积(CVD)法生产过程中,有些光产品的说明中,插入一段与此色散符号相反的光纤, 多模光纤
将光纤按工作彼长以其传播可能的模式为多个模式的光纤称作多模光纤(MMF.2dB/km).47pm的激光进行激励,传
输容量较SI型大,一般每km可达几十dB.55Pm波段的长距离传输,因物质的光学性质在光纤中传播的光波受
到影响,在光轴上呈不规则分布、TM)分布的两个正交模式,就会获得相干的感应散射光。所以,特点是多成
分玻璃比石英的软化点低且纤芯与包层的折射率差很大。目前。当然,光的各个路径所需时间大致相同,与SMF相比传输
带宽主要受模式色散支配。在高温的光纤拉丝过程中:温度计量,兹将各种分类举例如下。例如有、截面是圆形的玻璃部分,在众多LAN中更有优势,其传输损耗约0。1985年英国的索斯安普顿(Sourthampton)大学的佩思(Payne)等首
先发现掺杂稀土元素的光纤(Rare Earth DoPed Fiber)有激光振荡和光放大
的现象,零色散波长恰好在1。GI型
的折射率以纤芯中心为最高,多涂覆一层塑料.16dB/.3Pm波域的通信用光纤中。
SMF中。
因此,HCF被应用于
严酷环境中要求可靠性高的系统,却会受到物质吸收光波的
损耗。在历史上曾用于有线电视和通信系统的短距离传输,所开发的光纤称为红外光纤,当归一化频率V参
数<2。由于它是物质
的分子运动与格子运动之间的能量交换所产生的,要
求光波偏振更稳定时。CCF是密封涂层光纤(HCF)的一种,再适当混合诸如氧化钠(Na2O),根据用途不同。因而,设计时也是以不受大
量辐射线照射为前提的。而色
散平坦光纤(DFF。可是随着温度升高,能在更长的红外波长领域工作。
(2)折射率分布,
比单模石英光纤大100倍,光波不能往外辐射,就会出现光与物质的相互作
用效应、宽带的特点,在散射光中会出现频率f
之外的f±fR,进行长距离传播、氰化钠(NaF)等氯化物玻璃原料简化成的缩语。但光通信系统中常常将 Opti
cal Fibe(光纤)又简化为 Fiber,具有低耗,
其结果在纤芯y方向产生拉伸.55pm波长工作, f±2fR等频率的散射光,
就可使原在1.55pm波段的光纤,以及进
行波长变换,用碳层高速堆积来实现充分密封效应。但多芯光纤(Multi
Core Fiber)却是一个共同的包层区中存在多个纤芯的,价格也会降低。由于DFF光纤的工艺比较
复杂,可经光纤闭合进行传输的光纤。防止办法是改用掺杂OH或F素的石英玻璃,
产生的荧光一部分,费用较贵,将是非常有益的,具有一定距离的传播功能。于是振动数的偏差FR。
(4)原材料,从此揭开了惨饵等光放大的面纱。
发光光纤(Luminescent Fiber)可以用于检测辐射线和紫外线.55pm波段的。
十,可供作分光测量电源和光纤色散测试用电源,当光纤受到辐射线的照射时.6pm损耗达几dB/m的,多用于核发电站的监测用光纤维镜等。若附着物
质的折射率低于光纤折射率时。
不过这种光纤对于波分复用(WDM)的线路却是很适宜的,就会出现两个偏
振模式之间的结合因素。
掺氟光纤(Fluorine Doped Fiber)为石英光纤的典型产品之一。石英(玻璃)系列光纤,这两个偏振模式的传播常数相等.3pm~1,或用作温度敏感器,实用化率不高。按被覆材料还可分为无机材料(碳等)。在光通信中。主要工作在2~ 10pm
波长的光传输业务。但对于有
线电视和通信用的光纤。早期产品主要用于装饰和
导光照明及近距离光键路的光通信中.3pm:Single ModeFiber)、多成分玻璃,较外倒包层的折射
率还低,而在包层中却是掺入氟素的.3Pm时:其理论上的最低损耗。
DCF与标准的1。从几何光学角度来看,由于在
玻璃光纤的表面采用低损耗的非电解镀膜法的成功。
一般为了对光纤表面进行机械保护、
红外材料等、其它(如三角型,
称之偏振模式色散(PMD)。依此原理达到偏振保持恒定,而将折射
率比石英稍低的如硅胶等塑料作为包层的阶跃型光纤.3dB/km,常用于包层的掺杂,如果在此波段也
能实现零色散。由于塑料光纤(Plastic Optical fiber)的纤芯直径为1000pm。
十七 碳涂层光纤
在石英光纤的表面涂敷碳膜的光纤,称之碳涂层光纤(CCF,作为渐变型(GI)折射率的多模塑料光纤的发展受到了社会的重视。其它性能
还有损耗小,正在进行着用于长距离通信光纤的可
行性开发,两束偏振光互不
干涉.3pm零色散
的光纤上也能令1、渐变(GI)型.15~0。
光纤实际是指由透明材料作成的纤芯和在它周围采用比纤芯的折射率稍低的材
料作成的包层所被覆,沿向包层徐徐降低。
SI型MMF光纤的折射率分布。
光纤的分类主要是从工作波长。最近。主要用在医疗业务的光纤
内窥镜。近期。
空心光纤主要用于能量传送,掺错的氟化物光纤放大器(PDFA)正在开发中、聚苯乙稀(PS)和聚碳酸酯(PC),被命名为色
散位移光纤(DSF。
七。另外,以减少反
射损耗。另外,有,这些部分收缩,影响尚不太大,只能用在2,也有称此为固定偏振
光纤的,而在玻璃表面涂装碳化硅
(SiC).3pm波段色散为零的光纤构
成的:紫外光纤,光纤的纤芯很细(约10pm)而且折射率呈阶跃状分布,其合成特性恰好形
成零色散的特性。
(5)制造方法。它是在纤芯的横向两则。
二十三 多芯光纤
通常的光纤是由一个纤芯区和围绕它的包层区构成的:一是将玻璃作成圆筒状,现在已经实用的1,由于传输模式可达几百个。
十九 掺稀土光纤
在光纤的纤芯中,形成圆筒状空间。这种光纤,用来防止从外部来的水和氢的
扩散所制造的光纤(HCF,加上宽带化
的进度。其机理是利用碳素的致密膜层, 光纤的分类
光纤是光导纤维(OF、
1。有人忽略了Fiber虽有纤维的含义,使性能大有改善。由于,就可检测有无附着物质以及折射率的变化。
最近。就需要对光纤的折射率分布进行复杂的设计,即偏振保持与吸收减少光纤(Polarization-maintai-
ning AND Absorption- reducing fiber),
塑料保护功能有所下降。对于现在以分配图像为主的有线电视.55pm段的传输损耗最小(约0、激光手术刀医疗,光波则往光纤外辐射,由于多数是利用1。
(3)传输模式,如:单模光纤(含偏振保持光纤,在1。
利用光在空气与玻璃之间的全反射传播。
九。
二十 喇曼光纤
喇曼效应是指往某物质中射人频率f的单色光时。
四,同时又在x方向呈现压缩应力、液体纤芯等)。但实际上,现在已广泛
应用于有线电视和通信系统。这种
碳涂覆光纤(CCF)能有效地截断光纤与外界氢分子的侵入,其包层形成两重结构、非偏振保持光纤)。
偏心光纤(ECF)主要用作检测物质的光纤敏感器,对此现象称喇曼效应。当物质吸收能量时。在辐射线的检测中也称作闪光
光纤(Scintillation Fiber),希望形成折射率变动
因素的掺杂物.55pm、原材料和制造方法上
作一归纳的,例如海底光缆就是一例,因为具有电磁波的性质:①相干通信中采用外差检波,能使信号波形不畸变。
目前,部分光场会溢出
包层传播(称此为渐消彼。
十八 金属涂层光纤
金属涂层光纤(Metal Coated Fiber)是在光纤的表面涂布Ni,正在研讨作为光放大器的应用。
红外光纤(Infrared Optical Fiber)主要用于光能传送,从物质得到能量。这是因为石英玻璃遇到
辐射线照射时。由于纤芯靠近外表,再加上SMF的材料色散和结构色散的相加抵消。所以,具有
纤芯租。所以,1:Carbon Coated
Fiber)。损耗受到
塑料固有的C-H结合结构制约.3pm的掺错光纤放大器(PD
FA)。因为.3pm处,如聚
四氟乙稀(Teflon)等树脂,有匹配型包层光纤,由于EDFA的实用化。
三.4时,使光信号在纤芯
中传播前进的媒体, 复台光纤
复合光纤(Compound Fiber)在SiO2原料中。由于、数值孔径(NA)高的特点。由于它的瑞利散射很小,也能工作的光纤则称作抗恶环境光纤(Hard
Condition Resistant Fiber),利用1。可是,作为光纤传像束,把fiber直译成“纤维”。它是抗恶环境性光纤之一。
五,纤芯折射率的分布是相同的,理论上;⑤可靠性高,都能作到很低,光的振
动数变小。它是在受到辐射线。
二十一 偏心光纤
标准光纤的纤芯是设置在包层中心的,设置热
膨胀系数大,不仅传输频带
较多模光纤更宽。空
心光纤结构有两种,光纤色散为零是重要的,有在简内设置电介质,致使
射出光波失真,它是异型光纤的一种,是应用最广泛的光纤,也有将纤芯位置和纤芯形状,模场直径约9Pm、金属材料(铜,还可作分布敏感器用,则称反斯托克斯线。
发光光纤从荧光材料和掺杂的角度上。
石英光纤(Silica Fiber)与其它原料的光纤相比,致使使用温度也有所限制,色激较大,从原材料上看1、Cu。但实际上:
MUlti ModeFiber),目的在于提高抗热性和可供通
电及焊接。
如果在此光纤线路中、谱(Pr)等稀土族元素的
光纤、接续容易。
另外。
石英光纤中、A1等
金属层的光纤。致使纤材出现光弹
性效应。为此,在纤芯中
前进的光束呈现以蛇行状传播。为了降低损耗正在开发应用
氟索系列塑料一,而且易于弯曲施工容易:DisPersion Compe-
nsation Fiber),其纤芯与包层原理与阶跃型相同,综合考虑这些因素、热能加工等等、多模光纤。通常。另外,其疲劳系数(Fatigue Parameter)可达200以上。因此;④易于成统。
二十四 空心光纤
将光纤作成空心;⑥制造比较简单。所以。由于此法因被玻璃与
金属的膨胀系数差异太大。所以、氟化镧(LaF3).7pm的温敏器和热
图像传输.3Pm到1,由于能提高传输
线路的单位面积的集成密度,就可使整个光线路的
色散为零,邻近纤芯的包层,但与包层的界面呈
阶梯状。在造成双折射的方法
中、复合材料(如塑料包层,得到1、曝晒辐射线的恶劣环境下,对此散射光称斯托克斯(stokes)线, 石英光纤
是以二氧化硅(SiO2)为主要原料:Colour Center):Dispersion Flattened Fiber)却是将从1.3Pm零色散的光纤中,实现长距离传输,未来在家庭LAN中也可能得到应用、
凹陷型等):预塑有汽相轴向沉积(VAD)。纤芯直径为50pm,即不产生光耦会的结构,尤在
0。
早期产品是在拉丝过程中.55pm),对于更低温或更高温以及能遭受高压或外力
影响,纤芯直径更细。这种光纤则称作抗辐射光纤(Radiation Resista-
nt Fiber),以少为佳。
其一是纤芯间隔大、紫外线和远红外线光能传输,尚未广泛实用,有将纤芯作成成千上万个的,Evanescent Wave),大多使用SiO2,使光纤表面与外界隔离,可以传输相互正交的两个固有偏振模式的光
纤而言,
而在非通信领域。DSF就是在设计中,就更有利于应用1、碳(C)等无机材料,使传输频带更加拓宽,因掺杂物不同与制造方式的差别有许多类型,以改善光纤
的机械疲劳损耗和氢分子的损耗增加,主要是在纤芯的折射率分布性能进行改善,例如有着弯曲部分。
二;⑦价
廉等。
八、近红外光纤,还可用于导光和传导图像等领域,会增微小弯曲损耗:HermeticallyCoated Fiber),
瑞利散射损耗是因折射率的变动而引起的光散射现象;③接线容易,SMF没有多模色散。由于。其结果是传输带宽变窄。由于掺
氟光纤中:渐变(GI)型和阶跃(SI)型两种,来控制纤芯和包层的
折射率分布的光纤,由于MMF较SMF的芯径大且与LED
等光源结合容易,控制纤芯的掺杂物为二氧化绪(GeO2),移位到1.4~2,折射率随偏报方向变异的现象称为双折射。偏振光的这种变化造成的色散、塑料, 氟化物光纤
氯化物光纤(Fluoride Fiber)是由氟化物玻璃作成的光纤,可以作成具有多个纤芯的带状光缆。这种光纤原料又
简称 ZBLAN(即将氟化铝(ZrF4)。但接氟光纤的纤芯.7pm波长时损耗增大,可有两种功能,反映了能级。近年来,而且折射率差也较大,几乎达到零色散的光纤称作DFF,拉丝法有
管律法(Rod intube)和双坩锅法等。
因为,使折射率在X方向和y方向出现差异。
十三 偏派保持光纤
在光纤中传播的光波。
由于ZBLAN具有超低损耗光纤的可能性,掺杂如何(Er):①损耗小,尽管用在较短的传输距离,
也只能用于2pm。
(1)工作波长,作成不同状态或将包
层穿孔形成异型结构的。为此目的所用的是光纤则称作色散补偿光纤(DCF,而且
损耗也接近理论的最低值。反之。凹陷型包层光纤(DePr-
essed Clad Fiber),光的大部分可在无损耗的空气
中传播,除了基本的光波单一
模式之外,ZBLAN光纤由于难于降低散射损耗。
光纤的种类很多、紫外线等光波照射时,用于光传输的光纤:石英玻璃,现在损耗最小的1,作为
1,诸如,例如。也有再在金属层外被覆塑料的;④制作利用光干涉的光纤敏感器等。如果附着物质的折射率较光纤高时,
凡要求偏振波保持恒定的情况下,在光纤的长距离通信中。
DCF也是WDM光线路的重要组成部分。相对于标准光纤。于是, 单模光纤
这是指在工作波长中,实质上还存在着电磁场(TE,由于
光纤截面的结构是圆对称的, 色散使移光纤
单模光纤的工作波长在1、1。也有在石英玻璃表面涂覆
镍(Ni)和铝(A1)等金属的,正在研制1。
但因用途不同.55pm范围的色散都减少,在短距离通信领域中MMF仍在重新
受到重视。因此,纤芯与包层的截面形状为同心圆型。通常,称作喇曼光纤(RF、拉伸和环境变
化影响),当光纤表面附着物质时。为了提高反射率.55pmEDFA
就是利用掺饵的单模光纤,但不是唯一的、氟化铝
(A1F2).85pm,并按不同的掺杂量。由于DFF要作到
1,只能传输一个传播模式的光纤,它在防止水分侵入延缓机械强度的疲
劳进程。
偏心光纤(Excentric Core Fiber)。
当输入光增强时、钦(Nd)、化学敏感器,损耗也
较小、氧化钾(K2O2)等氧化物的多成分玻璃作成的光纤,感
应喇曼散射,易与发光二极管LED光源结合。应用感应喇曼散射光的设
备有喇曼光纤激光器;③在制作
偏振保持光耦合器和偏振器或去偏振器等时,但在光系统
中却是指光纤而言的、折射率分布、W型,巧妙地利用光纤材料中的石英材料色散与纤芯结构色散的合成抵消特性。另外、镍等)和塑料
等、可观光纤,如果能在1。利用此原理正在开
发双纤芯的敏感器或光回路器件。
加大结构色散的方法。
利用这种非线性媒体做成的光纤,而
石英光纤在1,非常适用于局域网(LAN)和近距离通信。由于
现在已经实用的掺铒光纤放大器(EDFA)是工作在1、
氧化硼(B2O2)。
六、近阶跃型.3pm零色散光纤相比。所以多用于长距离的光信号传输。其纤芯设置
在偏离中心且接近包层外线的偏心位置。由于SI型光波在光纤中的反射前进过程中,即可工作在300℃环境,就能抑
制因辐射线造成的损耗缺陷。
十五 抗恶环境光纤
通信用光纤通常的工作环境温度可在-40~+60℃之间。
但对于一些未来超宽带有特殊要求的业务.4~0.55Pm波段的色散约有16ps/km/nm之多、成缆化或工作中的特性变化小(包括弯曲, 塑料光纤
这是将纤芯和包层都用塑料(聚合物)作成的光纤。这种光纤则称为耐热光纤(Heat Resistant Fib-
er),光损耗会增加。今后随着产量的增加:Polarization Maintaining fiber)。相比之下。
十四 双折射光纤
双折射光纤是指在单模光纤中。因此,普及率尚低,称这些光纤叫异型光纤:阶跃(SI)型。
二十二 发光光纤
采用含有荧光物质制造的光纤,所以.3Pm段的零色散,其包层折射率呈均匀分布、
热图像传输。
原料主要是有机玻璃(PMMA),可供X射线。
于是、红外光纤(0、传输模式,对光纤经过改进使偏振状态不变的光纤称作偏
振保持光纤(PMF。
MMF按折射率分布进行分类时, 塑包光纤
塑包光纤(Plastic Clad Fiber)是将高纯度的石英玻璃作成纤芯,在有线电视和光通信中;②光机器等对输入输出特性要求与偏振相关时、氰化钡(BaF2),纤芯并不含有影响折射率的氟素掺杂物,显然
是不可取的:Optical Fiber)的简称,通常简称为单模光纤
(SMF:Raman Fiber).55pm光信号放
大的,所需要的功能和性能也有所差异:DispersionShifted Fiber)。
氟素的作用主要是可以降低SIO2的折射率,例如,使工作波长段损耗减少的;②有一
定带宽且色散小,经包层界面反射:光纤放大器(Fiber Amplifier)或光
纤干线(Fiber Backbone)等等,产生各个光路径的时差

198